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Introduction 

 Complex model simulations with uncertainty quantification (UQ) generally require orders of 

magnitude higher computational cost than their deterministic counterparts. As such, UQ analysis can 

benefit greatly from advances in high performance computing. In fact, it has often been claimed that one 

major driver for extreme-scale computing is to enable complex simulations with UQ. The objective of this 

paper is to scrutinize this claim by analyzing the computational requirements of different UQ 

methodologies against some characteristics of extreme-scale architectures. Our position is that the validity 

of this claim depends on the type of UQ methodology employed together with the distinction between 

extreme-scale capacity and extreme-scale capability. In particular, we maintain that, without additional 

in-situ analyses that require tighter couplings (and thus communication of large shared data) between 

independent simulations, purely non-intrusive UQ methods offer a weak case for needing extreme-scale 

capability (not capacity).  The goal of presenting this position is to stimulate new thinking in taking 

advantage of extreme-scale capabilities in developing new strategies for rigorous and efficient UQ. 
 

Our Argument 

 Non-intrusive or sampling-based UQ generally involves a large number of independent 

simulations with different uncertain parameter values. Suppose 1000 independent simulations are needed 

for a UQ study, and each simulation requires petaflop capability to give acceptable turn-around time. If an 

exaflop computer is available (that is, all processing units are physically co-located), a straightforward 

simulation scenario is to divide the machine into 1000 partitions, each one of which is responsible for a 

single simulation. An equally feasible alternative is to run the simulations on 1000 petaflop computers 

that may reside at different geographical locations and are connected via the internet. Thus, it is fair to say 

that non-intrusive UQ requires extreme-scale capacity, but not so much extreme-scale (co-located with 

fast interconnection network) capability, due to the “embarrassing parallelism” in sampling-based UQ. 

This observation has at least two ramifications: (1) exascale UQ (non-intrusive) can be performed on 

today‟s petascale computers and thus the 20 MW power consumption in exascale challenge is less 

critical; and (2) this alternative offers the flexibility of not having to rely on exascale transistor technology 

(which will likely use near-threshold supply voltage) and thus helps to improve resiliency (assuming that 

the older petascale technology, which uses higher voltage, offers relatively lower soft error rates) as well 

as lessen the priority to address exascale issues such as lower memory per core and deep memory 

hierarchy.  
 

Some Counter Arguments and Responses 

 This section considers several possible UQ strategies to circumvent the argument given in last 

section. These strategies attempt to strengthen the appropriateness of sampling-based UQ methods for 

extreme-scale computing by introducing tighter coupling into UQ simulations. The objective of this 

section is to assess the strengths and weaknesses of these strategies. 

        Counter Argument #1: Most petascale simulations generate large amount (giga- or tera-bytes) of 

output data. Since analysis of the UQ simulations requires all simulation outputs to be gathered at 

one place, it is pertinent that all simulations to be performed locally. 

        Response #1: Even though large amount of output data may be created from a complex simulation, 

most of the time the large data set is post-processed to extract a much smaller set of data metrics 

for UQ analysis. Thus, gathering these extracted outputs from the geographically scattered 

computers should not significantly impede the efficiency of UQ analysis. 

        Counter Argument #2: Newer UQ methodologies seek to enhance efficiency (for example, in 

creating response surfaces or surrogates) by sampling mostly at “important” regions in the 



parameter space—an approach called “adaptive or importance” sampling. These adaptive 

strategies require monitoring simulation results continuously and thus they greatly benefit from 

the availability of extreme-scale computers.  

        Response #2: Most often only a small data set from each simulation is used to determine the next set 

of sample points. As in #1 above, gathering the data sets from all simulations for adaptive 

analysis should not create significant inefficiency even when the simulations are run on 

computers that are not physically co-located (The same can be said about parallel numerical 

optimization where each function evaluation is a petascale simulation.) 

        Counter Argument #3: Sampling-based UQ can be made more efficient by grouping them together 

using the concept of “single program multiple data” paradigm, that is, running one program on 

multiple instances corresponding to a number of sample points, so that some information (for 

example, physics lookup tables, Krylov vectors, preconditioners) may be shared among instances. 

        Response #3: This scenario is feasible, but may not be practical. For example, different instances 

may require different lookup tables. Also, the time-steps may be very different between instances 

that it may not be possible to share lookup tables, Krylov vectors, or preconditioners. 

        Counter Argument #4: Sampling-based UQ methods may benefit (need smaller sample size) from 

simulations that also compute derivatives with respect to the uncertain parameters (for example, 

using automatic differentiation), and these “loaded” simulations are more tightly coupled and 

more computationally intensive to require exascale capability. 

        Response #4: This scenario provides a stronger counter argument than the previous ones (actually 

this belongs to the class of „semi-intrusive‟ methods). In practice, unless there are hundreds or 

thousands of uncertain parameters, each loaded simulation may not need exascale capability. 

        Counter Argument #5: Interval-based UQ methods that propagate epistemic uncertainties via 

overloaded data types (that encapsulate probability bounds instead of fixed values) and innovative 

interval arithmetic operations are much more computationally intensive and sufficiently coupled 

to justify exascale capability.  

        Response #5: It is unclear at this point how useful these methods are for complex models since 

current interval-based methods do not provide tight enough uncertainty bounds at the output. 

Nonetheless, further advances in this class of methods may make them more appealing. 

        Counter Argument #6: There are situations that a large data set is generated from each simulation 

and this data set can only be reduced by comparing it against the data sets from all other 

simulations via, for example, data mining techniques. This in-situ analysis requires that all 

simulations be co-located to avoid sending huge data sets across the communication network. 

        Response #6: This non-intrusive UQ analysis coupled with other in-situ analysis is by far the 

strongest case for needing extreme-scale computing, and thus should be explored further. 

 

Further Discussions 

 The discussion above shows that sampling-based UQ methods are in general too decoupled to 

take advantage of extreme-scale capabilities. This section suggests three possible directions in UQ 

research and development that can better exploit (but not for the sake of) extreme-scale capabilities: 

1. Integrate sampling-based UQ with other important tasks so that together they require tighter 

coupling between all simulations (e.g. in-situ analysis of large data sets across all simulations). 

2. Intrusive UQ methods (e.g. based on generalized polynomial chaos: Xiu and Karniadakis, SIAM 

J. Sci. Comput. 24(2)) are natural candidates for extreme-scale computing. Major hurdles are the 

tedious tasks of re-formulation and re-implementation. Additional issues are resiliency and 

communication overhead. Advances in intrusive methods to address these hurdles and issues may 

make them more attractive on extreme-scale machines.  

3. Mixed intrusive/non-intrusive UQ methods, that provide more flexibility in re-formulation and re-

implementation and yet are tightly coupled, are good candidates for extreme-scale computers.  
 


